Fundamentals of Accelerators 2012
 Day 4

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

|l|e The synchrotron introduces two new ideas: change $B_{\text {dipole }} \&$ change $\omega_{\text {rf }}$

* For low energy ions, $f_{\text {rev }}$ increases as $E_{i o n}$ increases
* ==> Increase $\omega_{r f}$ to maintain synchronism
* For any $E_{i o n}$ circumference must be an integral number of rf wavelengths

$$
L=h \lambda_{r f}
$$

$$
\begin{gathered}
L=2 \pi R \\
f_{\text {rev }}=1 / \tau=v / L
\end{gathered}
$$

Iliī

Ideal closed orbit in the synchrotron

* Beam particles will not have identical orbital positions \& velocities
* In practice, they will have transverse oscillatory motion (betatron oscillations) set by radial restoring forces
* An ideal particle has zero amplitude motion on a closed orbit along the axis of the synchrotron

IIIIT
 Ideal closed orbit \& synchronous particle

* The ideal synchronous particle always passes through the rf-cavity when the field is at the same phase

|||| Synchrotron acceleration

* The rf cavity maintains an electric field at $\omega_{r f}=h \omega_{r e v}=h 2 \pi v / L$
* Around the ring, describe the field as $E(z, t)=E_{1}(z) E_{2}(t)$
* $\mathrm{E}_{1}(\mathrm{z})$ is periodic with a period of L

$$
E_{2}(t)=E_{o} \sin \left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)
$$

* The particle position is $z(t)=z_{o}+\int_{t_{o}}^{t} v d t$

||| Phasing in a linac

* In the linac we must control the rf-phase so that the particle enters each section at the same phase.

|l||i Energy gain

* The energy gain for a particle that moves from 0 to L is given by:

$$
\begin{aligned}
& W=q \int_{0}^{L} E(z, t) \cdot d z=q \int_{-g / 2}^{+g / 2} E_{1}(z) E_{2}(t) d z= \\
& =q g E_{2}(t)=q E_{o} \sin \left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)=q V
\end{aligned}
$$

* V is the voltage gain for the particle.
> depends only on the particle trajectory
> includes contributions from all electric fields present
- (RF, space charge, interaction with the vacuum chamber, ...)
* Particles can experience energy variations $U(E)$ that depend on energy
> synchrotron radiation emitted by a particle under acceleration

$$
\Delta E_{\text {Total }}=q V+U(E)
$$

||||| Energy gain -II

* The synchronism conditions for the synchronous particle
$>$ condition on rf- frequency,
$>$ relation between rf voltage $\&$ field ramp rate
* The rate of energy gain for the synchronous particle is

$$
\frac{d E_{s}}{d t}=\frac{\beta_{s} c}{L} e V \sin \varphi_{s}=\frac{c}{h \lambda_{r f}} e V \sin \varphi_{s}
$$

* Its rate of change of momentum is

$$
\frac{d p_{s}}{d t}=e E_{o} \sin \varphi_{s}=\frac{e V}{L} \sin \varphi_{s}
$$

|||| Beam rigidity links B, p and ρ

* Recall that $\mathrm{p}_{\mathrm{s}}=\mathrm{e} \rho \mathrm{B}_{\mathrm{o}}$
* Therefore,

$$
\frac{d B_{o}}{d t}=\frac{V \sin \varphi_{s}}{\rho L}
$$

* If the ramp rate is uniform then $V \sin \phi_{s}=$ constant
* In rapid cycling machines like the Tevatron booster

$$
B_{o}(t)=B_{\min }+\frac{B_{\max }-B_{\min }}{2}\left(1-\cos 2 \pi f_{\text {cycle }} t\right)
$$

* Therefore $V \sin \phi_{s}$ varies sinusoidally

Iliī

Phase stability \& Longitudinal phase space

||| Phase stability: Will bunch of finite length stay together \& be accelerated?

Let's say that the synchronous particle makes the $i^{\text {th }}$ revolution in time: T_{i}

Will particles close to the synchronous particle in phase stay close in phase?

Discovered by MacMillan \& by Veksler

\|He What do we mean by phase? Let's consider non-relativistic ions

How does the ellipse change as B lags further behind A ?

Iliī How does the ellipse change as

 B lags further behind A ?

How does the size of the bucket change with ϕ_{s} ?

||F- This behavior can be though of as phase or longitudinal focusing

* Stationary bucket: A special case obtains when $\phi_{\mathrm{s}}=0$
$>$ The synchronous particle does not change energy
> All phases are trapped

* We can expect an equation of motion in ϕ of the form

$$
\frac{d^{2} \varphi}{d s^{2}}+\Omega^{2} \sin \varphi=0 \quad \text { Pendulum equation }
$$

Iliī
 For $\phi_{\sigma}=0$ we have

We've seen this behavior for the pendulum

Now let's return to the question of frequency

|||| Length of orbits in a bending magnet

$$
\rho=\frac{p}{q B_{z}}=\frac{\beta \gamma m_{0} c}{q B_{z}}
$$

$L_{0}=$ Trajectory length between A and B $L=$ Trajectory length between A and C

$$
\frac{L-L_{0}}{L_{0}} \propto \frac{p-p_{0}}{p_{0}} \quad \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \quad \text { where } \alpha \text { is constant }
$$

$$
\text { For } \gamma \gg 1 \Rightarrow \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \cong \alpha \frac{\Delta E}{E_{0}}
$$

In the sector bending magnet $L>L_{0}$ so that $a>0$ Higher energy particles will leave the magnet later.

|||| Definition: Momentum compaction

$$
\begin{gathered}
\frac{\Delta L}{L}=\alpha \frac{\Delta p}{p} \\
\alpha=\int_{0}^{L_{o}} \frac{D_{x}}{\rho} d s
\end{gathered}
$$

where dispersion, D_{x}, is the change in the closed orbit as a function of energy

Momentum compaction, α, is the change in the closed orbit length as a function of momentum.

Iliī

* Distance along the particle orbit between rf-stations is L
* Time between stations for a particle with velocity v is

$$
\tau=L / v
$$

* Then

$$
\frac{\Delta \tau}{\tau}=\frac{\Delta L}{L}-\frac{\Delta v}{v}
$$

* Note that

$$
\frac{\Delta v}{v}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p}
$$

* For circular machines, L can vary with p
* For linacs L is independent of p

Iliī
 Phase stability: Slip factor \& transition

* Introduce γ_{t} such that

$$
\frac{\Delta L}{L}=\frac{1}{\gamma_{t}^{2}} \frac{\Delta p}{p}
$$

* Define a slip factor

$$
\eta \equiv \frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}
$$

* At some transition energy η changes sign
* Now consider a particle with energy E_{n} and phase ψ_{n} w.r.t. the rf that enters station n at time T_{n}

|||| Equation of motion for particle phase

* The phase at station $n+1$ is

$$
\begin{aligned}
\psi_{n+1} & =\psi_{n}+\omega_{r f}(\tau+\Delta \tau)_{n+1} \\
& =\psi_{n}+\omega_{r f} \tau_{n+1}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}
\end{aligned}
$$

* By definition the synchronous particle stays in phase $(\bmod 2 \pi)$
* Refine the phase $\bmod 2 \pi$

$$
\phi_{n}=\psi_{n}-\omega_{r f} T_{n}
$$

$$
\phi_{n+1}=\phi_{n}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}=\phi_{n}+\eta \underbrace{\omega_{r f} \tau_{n+1}}\left(\frac{\Delta p}{p}\right)_{n+1}
$$

harmonic number $=2 \pi \mathrm{~N}$

\|\|| Equation of motion in energy

$\left(E_{s}\right)_{n+1}=\left(E_{s}\right)_{n}+e V \sin \phi_{s} \quad$ and in general $\quad E_{n+1}=E_{n}+e V \sin \phi_{n}$

Define $\Delta E=E-E_{s}$

$$
\Delta E_{n+1}=\Delta E_{n}+e V\left(\sin \phi_{n}-\sin \phi_{s}\right)
$$

Exercise: Show that $\frac{\Delta p}{p}=\frac{c^{2}}{v^{2}} \frac{\Delta E}{E}$
Then

$$
\phi_{n+1}=\phi_{n}+\frac{\omega_{r f} \tau \eta c^{2}}{E_{s} v^{2}} \Delta E_{n+1}
$$

IIIIT Longitudinal phase space of beam

Solving the difference equations will show if there are areas of stability in the $(\Delta E / E, \phi)$ longitudinal phase space of the beam

$\left\|\| \mid{ }^{\mid l}\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 0 3}, \phi_{n}=\phi_{s}$

$\left|\left|\left|\left|\mid ~ P h a s e ~ s t a b i l i t y, ~ \Delta E / E=0.05, \phi_{n}=\phi_{s}\right.\right.\right.\right.$

Phi

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 1}, \phi_{n}=\phi_{s}$

$|1|\left|\mid\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 4 0 5}, \phi_{n}=\phi_{s}$

Regions of stability and instability are sharply divided

|l||| Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 4 5}, \boldsymbol{\phi}_{n}=\boldsymbol{\phi}_{s}$

Phi

Phi

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 6}, \phi_{n}=\phi_{s}$

|||| Physical picture of phase stability

Here we've picked the case in which we are above the transition energy
(typically the case for electrons)

Illiī
 Consider this case for a proton accelerator

||He Case of favorable transition crossing in an electron ring

Frequency of synchrotron oscillations

* Phase-energy oscillations mix particles longitudinally within the beam
* What is the time scale over which this mixing takes place?
* If $\Delta \mathrm{E}$ and ϕ change slowly, approximate difference equations by differential equations with n as independent variable

